Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1250342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810621

RESUMO

Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-ß (Aß) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aß increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aß proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.

2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982549

RESUMO

Aging is a physiological process that generates progressive decline in many cellular functions. There are many theories of aging, and one of great importance in recent years is the mitochondrial theory of aging, in which mitochondrial dysfunction that occurs at advanced age could be responsible for the aged phenotype. In this context, there is diverse information about mitochondrial dysfunction in aging, in different models and different organs. Specifically, in the brain, different studies have shown mitochondrial dysfunction mainly in the cortex; however, until now, no study has shown all the defects in hippocampal mitochondria in aged female C57BL/6J mice. We performed a complete analysis of mitochondrial function in 3-month-old and 20-month-old (mo) female C57BL/6J mice, specifically in the hippocampus of these animals. We observed an impairment in bioenergetic function, indicated by a decrease in mitochondrial membrane potential, O2 consumption, and mitochondrial ATP production. Additionally, there was an increase in ROS production in the aged hippocampus, leading to the activation of antioxidant signaling, specifically the Nrf2 pathway. It was also observed that aged animals had deregulation of calcium homeostasis, with more sensitive mitochondria to calcium overload and deregulation of proteins related to mitochondrial dynamics and quality control processes. Finally, we observed a decrease in mitochondrial biogenesis with a decrease in mitochondrial mass and deregulation of mitophagy. These results show that during the aging process, damaged mitochondria accumulate, which could contribute to or be responsible for the aging phenotype and age-related disabilities.


Assuntos
Cálcio , Mitocôndrias , Camundongos , Animais , Feminino , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Metabolismo Energético , Oxirredução , Hipocampo/metabolismo , Homeostase
3.
Aging Cell ; 22(5): e13814, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973898

RESUMO

Age is the main risk factor for the development of neurodegenerative diseases. In the aged brain, axonal degeneration is an early pathological event, preceding neuronal dysfunction, and cognitive disabilities in humans, primates, rodents, and invertebrates. Necroptosis mediates degeneration of injured axons, but whether necroptosis triggers neurodegeneration and cognitive impairment along aging is unknown. Here, we show that the loss of the necroptotic effector Mlkl was sufficient to delay age-associated axonal degeneration and neuroinflammation, protecting against decreased synaptic transmission and memory decline in aged mice. Moreover, short-term pharmacologic inhibition of necroptosis targeting RIPK3 in aged mice, reverted structural and functional hippocampal impairment, both at the electrophysiological and behavioral level. Finally, a quantitative proteomic analysis revealed that necroptosis inhibition leads to an overall improvement of the aged hippocampal proteome, including a subclass of molecular biofunctions associated with brain rejuvenation, such as long-term potentiation and synaptic plasticity. Our results demonstrate that necroptosis contributes to age-dependent brain degeneration, disturbing hippocampal neuronal connectivity, and cognitive function. Therefore, necroptosis inhibition constitutes a potential geroprotective strategy to treat age-related disabilities associated with memory impairment and cognitive decline.


Assuntos
Necroptose , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Idoso , Proteômica , Rejuvenescimento , Envelhecimento/fisiologia , Encéfalo , Transtornos da Memória
4.
Front Physiol ; 12: 740939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744783

RESUMO

Traumatic brain injury (TBI) is a heterogeneous disorder that involves brain damage due to external forces. TBI is the main factor of death and morbidity in young males with a high incidence worldwide. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Glial cells comprise most cells in CNS, which are mediators in the brain's response to TBI. In the CNS are present astrocytes, microglia, oligodendrocytes, and polydendrocytes (NG2 cells). Astrocytes play critical roles in brain's ion and water homeostasis, energy metabolism, blood-brain barrier, and immune response. In response to TBI, astrocytes change their morphology and protein expression. Microglia are the primary immune cells in the CNS with phagocytic activity. After TBI, microglia also change their morphology and release both pro and anti-inflammatory mediators. Oligodendrocytes are the myelin producers of the CNS, promoting axonal support. TBI causes oligodendrocyte apoptosis, demyelination, and axonal transport disruption. There are also various interactions between these glial cells and neurons in response to TBI that contribute to the pathophysiology of TBI. In this review, we summarize several glial hallmarks relevant for understanding the brain injury and neuronal damage under TBI conditions.

5.
Biol Res ; 54(1): 5, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593425

RESUMO

BACKGROUND: Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS: The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.


Assuntos
Concussão Encefálica/metabolismo , Exocitose , Proteínas de Transporte Vesicular/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Biol. Res ; 54: 5-5, 2021. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1505796

RESUMO

BACKGROUND: Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS: The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.


Assuntos
Animais , Masculino , Camundongos , Concussão Encefálica/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Exocitose , Camundongos Endogâmicos C57BL
7.
Cells ; 9(11)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153008

RESUMO

Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.


Assuntos
Receptores de Glutamato/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Humanos , Modelos Biológicos , Plasticidade Neuronal , Transporte Proteico , Sinapses/metabolismo
8.
Biochem Biophys Res Commun ; 528(3): 514-519, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32505350

RESUMO

Binge drinking is the consumption of large volumes of alcohol in short periods and exerts its effects on the central nervous system, including the hippocampus. We have previously shown that binge drinking alters mitochondrial dynamics and induces neuroinflammation in the hippocampus of adolescent rats. Mild traumatic brain injury (mTBI), is regularly linked to alcohol consumption and share mechanisms of brain damage. In this context, we hypothesized that adolescent binge drinking could prime the development of brain damage generated by mTBI. We found that alcohol binge drinking induced by the "drinking in the dark" (DID) paradigm increases oxidative damage and astrocyte activation in the hippocampus of adolescent mice. Interestingly, adolescent animals submitted to DID showed decreased levels of mitofusin 2 that controls mitochondrial dynamics. When mTBI was evaluated as a second challenge, hippocampi from animals previously submitted to DID showed a reduction in dendritic spine number and a different spine profile. Mitochondrial performance could be compromised by alterations in mitochondrial fission in DID-mTBI animals. These data suggest that adolescent alcohol consumption can modify the progression of mTBI pathophysiology. We propose that mitochondrial impairment and oxidative damage could act as priming factors, modifying predisposition against mTBI effects.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Hipocampo/fisiopatologia , Maturidade Sexual/fisiologia , Consumo de Bebidas Alcoólicas/patologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/complicações , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Hipocampo/patologia , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/fisiologia , Estresse Oxidativo
9.
Cells ; 8(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671734

RESUMO

Neurons release neurotransmitters at a specialized region of the presynaptic membrane, the active zone (AZ), where a complex meshwork of proteins organizes the release apparatus. The formation of this proteinaceous cytomatrix at the AZ (CAZ) depends on precise homo- and hetero-oligomerizations of distinct CAZ proteins. The CAZ protein CAST1/ERC2 contains four coiled-coil (CC) domains that interact with other CAZ proteins, but also promote self-assembly, which is an essential step for its integration during AZ formation. The self-assembly and synaptic recruitment of the Drosophila protein Bruchpilot (BRP), a partial homolog of CAST1/ERC2, is modulated by the serine-arginine protein kinase (SRPK79D). Here, we demonstrate that overexpression of the vertebrate SRPK2 regulates the self-assembly of CAST1/ERC2 in HEK293T, SH-SY5Y and HT-22 cells and the CC1 and CC4 domains are involved in this process. Moreover, the isoform SRPK2 forms a complex with CAST1/ERC2 when co-expressed in HEK293T and SH-SY5Y cells. More importantly, SRPK2 is present in brain synaptic fractions and synapses, suggesting that this protein kinase might control the level of self-aggregation of CAST1/ERC2 in synapses, and thereby modulate presynaptic assembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neurônios/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Células Cultivadas , Proteínas do Citoesqueleto/química , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Neurônios/citologia , Multimerização Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Sinapses/química , Sinapses/genética
10.
Front Behav Neurosci ; 13: 288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038190

RESUMO

Problematic alcohol drinking and alcohol dependence are an increasing health problem worldwide. Alcohol abuse is responsible for approximately 5% of the total deaths in the world, but addictive consumption of it has a substantial impact on neurological and memory disabilities throughout the population. One of the better-studied brain areas involved in cognitive functions is the hippocampus, which is also an essential brain region targeted by ethanol. Accumulated evidence in several rodent models has shown that ethanol treatment produces cognitive impairment in hippocampal-dependent tasks. These adverse effects may be related to the fact that ethanol impairs the cellular and synaptic plasticity mechanisms, including adverse changes in neuronal morphology, spine architecture, neuronal communication, and finally an increase in neuronal death. There is evidence that the damage that occurs in the different brain structures is varied according to the stage of development during which the subjects are exposed to ethanol, and even much earlier exposure to it would cause damage in the adult stage. Studies on the cellular and cognitive deficiencies produced by alcohol in the brain are needed in order to search for new strategies to reduce alcohol neuronal toxicity and to understand its consequences on memory and cognitive performance with emphasis on the crucial stages of development, including prenatal events to adulthood.

11.
Mol Neurobiol ; 56(7): 4620-4638, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30374940

RESUMO

Neurons are highly polarized cells displaying an elaborate architectural morphology. The design of their dendritic arborization and the distribution of their synapses contribute importantly to information processing in the brain. The growth and complexity of dendritic arbors are driven by the formation of synapses along their lengths. Synaptogenesis is augmented by the secretion of factors, like BDNF, Reelin, BMPs, or Wnts. Exo70 is a component of the exocyst complex, a protein complex that guides membrane addition and polarized exocytosis. While it has been linked to cytokinesis and the establishment of cell polarity, its role in synaptogenesis is poorly understood. In this report, we show that Exo70 plays a role in the arborization of dendrites and the development of synaptic connections between cultured hippocampal neurons. Specifically, while the overexpression of Exo70 increases dendritic arborization, synapse number, and spine density, the inhibition of Exo70 expression reduces secondary and tertiary dendrite formation and lowers synapse density. Moreover, increasing Exo70 expression augmented synaptic vesicle recycling as evaluated by FM4-64 dye uptake and the inverse was observed with downregulation of endogenous Exo70. Monitoring the formation of dendritic spines by super-resolution microscopy, we also observed that mRFP-Exo70 accumulates at the tip of EGFP-ß-actin-positive filopodia. Together, these results suggest that Exo70 is essentially involved in the formation of synapses and neuronal dendritic morphology.


Assuntos
Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/genética , Células HEK293 , Humanos , Lentivirus/metabolismo , Modelos Biológicos , Fenótipo , Ratos Sprague-Dawley , Proteína Reelina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...